ChartReporter Data Sheet

Contents

Overview
Main Application Window3
Chart Report Types
BoxPlot4
Correlation
GageStudy6
Histogram7
InstrumentAccuracy8
MeasurementUncertainty9
ParetoChart
Percentile11
RunPlot
Getting Data from a Database
Operating ChartReporter as Stand-Alone
Interfacing with the LabVIEW Development Environment15
Operating as a .NET Add-On

Overview

ChartReporter is a windows application that can produce full featured reports that include both charts and report analysis of the data. Key features are:

- The main user interface contains an Excel style workbook where data can either be imported from a file or sent directly into it from a separate development environment such as LabVIEW.
- Source code from a LabVIEW project can launch so developers can use the VIs to pass data and settings to the ChartReporter application via the Windows API.
- When a report is created inside ChartReporter, an application GUI is provided to edit settings to refine the report format before it is made final.
- Once a report is finalized on the application GUI, the both the chart and the analysis tables can be sent to a worksheet in the Main window.

The target audience are engineers, scientists, researchers, metrologists, or any others that are interested in analyzing data.

Main Application Window

•	ChartReporter													-	×
File															
: _	_		- 1 XEA X	_	22	0									
			i 🗎 ն	Auto Select	- 💦	- 60-									
Юр	en Samples	Database Sa	ave New Ru	ın	Tools	Help									
A1	~ F	PreTest													
	А	В	С	D	E	F	G	Н		J	K	L	М	N	(
1	PreTest	24H	48H	72H											
2	9.728532	10.14425	10.72036	10.196201											
3	9.885224	9.909177	10.48588	11.117306											
4	10.15841	10.38423	10.67967	11.708503											
5	10.44614	9.957694	9.787862	11.361124											
6	10.65961	10.30934	10.65463	9.90759											
7	9.894859	10.15136	9.915727	10.696445											
8	10.07124	10.39011	10.13255	10.777328											
9	9.964786	10.12689	9.448302	10.87081											
10	10.06148	10.25452	9.786112	11.207952											
11	9.769948	10.09869	9.950994	10.37489											
12	10.49613	9.971789	10.57939	10.462261											
13	10.09391	10.28155	10.48444	11.501686											
14	10.04713	10.2311	10.15039	10.840085											
15	9.959822	10.41402	10.55666	10.359											
16	9.722146	10.51865	10.0403	9.894348											
17	9.624632	10.14473	10.23433	10.206774											
18	9.906851	10.02424	10.284	10.944787											
19	10.10768	9.962027	10.18738	11.270731											
20	9.808136	9.847166	10.29778	11.032395											
21	10.54999	9.306278	10.09795	10.666544											
22	10.32236	10.09859	10.53891	11.161273											
23	9.774109	10.15438	10.51144	10.246317											
24	10.02091	9.890532	10.32834	10.423672											
25	10.02822	10.05515	9.816379	10.385245											
26	10.38277	9.912081	9.932075	10.370451											
27	9.905356	10.2217	10.09131	10.883019											
28	10.21681	10.18882	10.22198	11.112346											
29	10.26957	10.33371	10.25822	11.462749											
30	9.859717	10.07615	10.15771	10.46358											· ·
31	9.714698	9.891419	9.852162	10.615125											
32	10.21672	9.922242	9.874751	10.146644											
H 4	► H \ Rand	om Data / Par	etoChart Data	RunPlot Data (Correlation Da	ita / Instrume	ntAccuracy D	ata /							
Activ	e Workbook:	C:\Users\jim	-d\OneDrive\M	My Documents\CS	harp 2022 Cor	mmunity\Cha	ntReporter\bi	n\Release.\Inc	lude Files\Cha	tReporter Exar	mple Data.xlsx				

The form contains an Excel like interface, a Menu Bar, a Toolbar and a Status at the bottom of the form.

- Data can be loaded using either clicking **Open** or loaded automatically via an external development environment such as LabVIEW.
- A **Samples** button can be used to open a Workbook containing sample data to practice the capabilities.
- A **Databas**e button lets you query data from a database and copy it to a worksheet on the main application window.
- A report can be started by first loading in data and then clicking the **Run** button to start the report creation process. If data comes from an external application, the report starts automatically. The **Dropdown** to the right of the **Run** button allows you to select a rectangular regio automatically or do a manual selection.
- A Tools button is provided to provide custom reports or analysis
- A **Help** button is provided to give application help.
- Once a report is created, the workbook can be saved using the **Save** tool.

Chart Report Types

BoxPlot

BoxPlots visualize a distribution of data by showing a solid box from the 25th percentile to the 75th percentile (Inner quartile Range) and end points of the distribution as typically min and max. Outliers are shown as dots. BoxPlots versus histograms are best used when there are small samples or when the distribution is not normal. BoxPlots are an excellent way to show multiple distributions side by side on the same chart.

Correlation

1	Correla	tion Data		1	Shart2								
2	XData	YData	YFit	1					Sh	eet2			
3	0	0	0.001										
4	0.323	0.957	0.96										
5	0.645	2.539	2.539			350.0 -							
6	0.968	4.745	4.748									<u> </u>	
7	1.29	7.575	7.573			300.0 -							
8	1.613	11.03	11.031			250.0 -							
9	1.935	15.109	15.103										
10	2.258	19.813	19.811		~	200.0 -							
11	2.581	25.14	25.146		les	150.0 -							
12	2.903	31.093	31.088		l8>					and the second se			
13	3.226	37.669	37.673			100.0 -							
14	3.548	44.87	44.86			50.0							
15	3.871	52.695	52.695			00.0							
16	4.194	61.145	61.156			0.0							
17	4.516	70.219	70.214			-50.0							
18	4.839	79.917	70 0 25			- JU.U T							
		151511	15.525				1.	.7	3.7	5.7	7.7	9.7	
19	5.161	90.239	90.229				1.	.7	3.7	5.7 ValuesX	7.7	9.7	
19 20	5.161 5.484	90.239 101.186	90.229 101.19				1.	.7	3.7	5.7 ValuesX	7.7	9.7	
19 20 21	5.161 5.484 5.806	90.239 101.186 112.758	90.229 101.19 112.74				1.	.7	3.7	5.7 ValuesX	7.7	9.7	
19 20 21 22	5.161 5.484 5.806 6.129	90.239 101.186 112.758 124.953	90.229 101.19 112.74 124.951				1.	.7	3.7	5.7 ValuesX	7.7	9.7	
19 20 21 22 23	5.161 5.484 5.806 6.129 6.452	90.239 101.186 112.758 124.953 137.773	90.229 101.19 112.74 124.951 137.788		Summa	Γ γ	1.	.7	3.7	5.7 ValuesX	7.7	9.7	
19 20 21 22 23 24	5.161 5.484 5.806 6.129 6.452 6.774	90.239 101.186 112.758 124.953 137.773 151.217	90.229 101.19 112.74 124.951 137.788 151.209		Summa XName	y YName	1. Fit Order	.7 MSEE	3.7 RMSEE	5.7 ValuesX Coefficients	7.7	9.7	
19 20 21 22 23 24 25	5.161 5.484 5.806 6.129 6.452 6.774 7.097	90.239 101.186 112.758 124.953 137.773 151.217 165.286	90.229 101.19 112.74 124.951 137.788 151.209 165.296		Summa XName X	Y YName Y	1 Fit Order 2	.7 MSEE 0	3.7 RMSEE 0.01	5.7 ValuesX Coefficients a0=0.001 a1=1.999 a2	7.7	9.7	
19 20 21 22 23 24 25 26	5.161 5.484 5.806 6.129 6.452 6.774 7.097 7.419	90.239 101.186 112.758 124.953 137.773 151.217 165.286 179.979	90.229 101.19 112.74 124.951 137.788 151.209 165.296 179.963		Summa XName X	Y YName Y	1. Fit Order 2	.7 MSEE 0	3.7 RMSEE 0.01	5.7 ValuesX Coefficients a0=0.001 a1=1.999 a2	7.7	9.7	
19 20 21 22 23 24 25 26 27	5.161 5.484 5.806 6.129 6.452 6.774 7.097 7.419 7.742	90.239 101.186 112.758 124.953 137.773 151.217 165.286 179.979 195.297	90.229 101.19 112.74 124.951 137.788 151.209 165.296 179.963 195.3		Summa XName X	Y YName Y	1. Fit Order 2	.7 MSEE 0	3.7 RMSEE 0.01	5.7 ValuesX Coefficients a0=0.001 a1=1.999 a2	7.7	9.7	
19 20 21 22 23 24 25 26 27 28	5.161 5.484 5.806 6.129 6.452 6.774 7.097 7.419 7.742 8.065	90.239 101.186 112.758 124.953 137.773 151.217 165.286 179.979 195.297 211.238	90.229 101.19 112.74 124.951 137.788 151.209 165.296 179.963 195.3 211.263		Summa XName X	Y YName Y	1 Fit Order 2	.7 MSEE 0	3.7 RMSEE 0.01	5.7 ValuesX Coefficients a0=0.001 a1=1.999 a2	7.7	9.7	
19 20 21 22 23 24 25 26 27 28 29	5.161 5.484 5.806 6.129 6.452 6.774 7.097 7.419 7.742 8.065 8.387	90.239 101.186 112.758 124.953 137.773 151.217 165.286 179.979 195.297 211.238 227.804	90.229 101.19 112.74 124.951 137.788 151.209 165.296 179.963 195.3 211.263 227.8		Summa XName X	Y YName Y	1 Fit Order 2	.7 MSEE 0	3.7 RMSEE 0.01	5.7 ValuesX Coefficients a0=0.001 a1=1.999 a2	7.7	9.7	
19 20 21 22 23 24 25 26 27 28 29 30	5.161 5.484 5.806 6.129 6.452 6.774 7.097 7.419 7.742 8.065 8.387 8.71	90.239 101.186 112.758 124.953 137.773 151.217 165.286 179.979 195.297 211.238 227.804 244.995	90.229 101.19 112.74 124.951 137.788 151.209 165.296 179.963 195.3 211.263 227.8 245.013		Summa XName X	Y YName Y	1 Fit Order 2	.7 MSEE 0	3.7 RMSEE 0.01	5.7 ValuesX Coefficients a0=0.001 a1=1.999 a2	7.7	9.7	
19 20 21 22 23 24 25 26 27 28 29 30 31	5.161 5.484 5.806 6.129 6.452 6.774 7.097 7.419 7.742 8.065 8.387 8.71 9.032	90.239 101.186 112.758 124.953 137.773 151.217 165.286 179.979 195.297 211.238 227.804 244.995 262.81	90.229 101.19 112.74 124.951 137.788 151.209 165.296 179.963 195.3 211.263 227.8 245.013 262.796		Summa XName X	Y YName Y	1 Fit Order 2	.7 MSEE 0	3.7 RMSEE 0.01	5.7 ValuesX Coefficients a0=0.001 a1=1.999 a2	7.7	9.7	
19 20 21 22 23 24 25 26 27 28 29 30 31 32	5.161 5.484 5.806 6.129 6.452 6.774 7.097 7.419 7.742 8.065 8.387 8.71 9.032 9.355	90.239 101.186 112.758 124.953 137.773 151.217 165.286 179.979 195.297 211.238 227.804 244.995 262.81 281.249	90.229 101.19 112.74 124.951 137.788 151.209 165.296 179.963 195.3 211.263 227.8 245.013 262.796 281.26		Summa XName X	Y YName Y	1 Fit Order 2	.7 MSEE 0	3.7 RMSEE 0.01	5.7 ValuesX Coefficients a0=0.001 a1=1.999 a2	7.7	9.7	
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	5.161 5.484 5.806 6.129 6.452 6.774 7.097 7.419 7.742 8.065 8.387 8.71 9.032 9.355 9.677	90.239 101.186 112.758 124.953 137.773 151.217 165.286 179.979 195.297 211.238 227.804 244.995 262.81 281.249 300.312	90.229 101.19 112.74 124.951 137.788 151.209 165.296 179.963 195.3 211.263 227.8 245.013 262.796 281.26 300.289		Summa XName X	Y YName Y	1. Fit Order 2	.7 MSEE 0	3.7 RMSEE 0.01	5.7 ValuesX Coefficients a0=0.001 a1=1.999 a2	7.7	9.7	
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 33 34	5.161 5.484 5.806 6.129 6.452 6.774 7.097 7.419 7.742 8.065 8.387 8.71 9.032 9.355 9.677 10	90.239 101.186 112.758 124.953 137.773 151.217 165.286 179.979 195.297 211.238 227.804 244.995 262.81 281.249 300.312 320	90.229 101.19 112.74 124.951 137.788 151.209 165.296 179.963 195.3 211.263 227.8 245.013 262.796 281.26 300.289 320.002		Summa XName X	Y YName Y	Fit Order 2	.7 MSEE 0	3.7 RMSEE 0.01	5.7 ValuesX Coefficients a0=0.001 a1=1.999 a2	7.7	9.7	

The Correlation report provides a curve fit between two variables by allowing the user to adjust the fit order until the desired fit accuracy is determined. Polynomial coefficients are provided that can then be used to accurately determine a Y value given the X value. A use application is in a wind tunnel wind speed setup where a voltage is used to adjust the air velocity from a fan. Once the relationship coefficients are determined, the voltage setting for any specified air velocity can be set. A report tabulation of the polynomial coefficients and the resulting fit accuracy is provided.

GageStudy

	А	В	С	D	E	F	G	н					
1	Run D	ata			Results								
2	Point	Value	Event	Ī	Item	Description	Value	Status					
3	1	10.293			Column	The name of the data being studied	Gage1						
4	2	10.352			LSL	L Lower specification limit 5							
5	3	9.847			USL	L Upper specification limit 15							
6	4	9.947			Tolerance	nce USL-LSL 10							
7	5	9.681			N	The sample size of the data	32						
8	6	10.241			Mean	Average of the data	10.035						
9	7	9.887			SD	The sanple statndard deviation of the data	0.26						
10	8	10.179			Reference	The specified reference value or standard	10						
11	9	10.343			LCL	The Lower Control Limit of the Run Chart: Reference - 0.1*Tolerance	9.256						
12	10	10.47			CL	The Centrol Line of the Run Chart: (LCL + UCL)/2	10.035						
13	11	9.866			UCL	The Uppwe Control Limit of the Run Chart: Reference + 0.1*Tolerance	10.815						
14	12	10.295			Bias	Mean - Reference	0.035						
15	13	9.354			Cg	Gage capability without bias - >= 1.33 is capabile	1.28	Not Capable					
16	14	10.325			Cgk	Gage capability with bias - >= 1.33 is capabile)	1.24	Not Capable					
17	15	10.194			%Var without bias	% Variability without bias. Value <= 10 acceptable, between 10 and 30 marginal, above 30 unacceptable	15.59	Marginal					
18	16	9.855			%Var with bias	% Variability with bias. Value <= 10 acceptable, between 10 and 30 marginal, above 30 unacceptable	16.15	Marginal					
19	17	10.028			t-statistic	The ratio of the departure of the estimated value of a parameter from its hypothesized value to its standard error	0.766						
20	18	10.136			p-value	A p value greater than 0.05 means that difference in the Mean and the Reference is not statisitically significant	0.449	Not Significant					
21	19	9.934											
22	20	10.065				Bun Blot Histogram							
23	21	10.021				Kuirriot							
24	22	10.163			16.000								
25	23	9.889			14 000	USL							
26	24	9.743			14.000-								
27	25	9.783			12.000 -	LCL 6-							
28	26	10.053			를 10.000								
29	27	10.054			8 000								
30	28	9.738		-	0.000	2							
31	29	10.098		-	6.000 -								
32	30	9.986		-	4.000								
33	31	10.574			0 5	10 15 20 25 30 4.8 6.8 8.8 10.8 12.8 14.8							
34	32	9.732				Point Value							
35													
36													

GageStudy performs a Type 1 Gage Study on a single sample of gage data to check its suitability to make capable measurements considering the gage spec limits and a reference standard. The above two charts show the variability of the gage being studied as a RunPlot and as a Histogram. The GageStudy report among other items, the Gage capabilities Cg (variability only) and Cgk (variability considering the mean relative to the standard reference).

Histogram

	А	В	С	D	E	F	G	н	1	J	К	L	M	Ν	0	Р	
1	Bin Width	: 0.172															
2	Value	Count			Histogram												
3	9.613	3		10													
4	9.784	7		10	6				\sim				2 Z				
5	9.956	7		-	-								-				
6	10.128	8		8-					/	8							
7	10.299	7		Ŭ				7	7	\sim	7						
8								1									
9				6-				- 7									
10				ti				1		~ 1							
11				ပိ				/									
12				4 -	_												
13								3 /									
14																	
15				2-													
16																	
17				0-													
18				9.	0		9.5		10.0		10.5		11.0				
19									Value								
20									Value	·							
21																	
22																	
23	Statistics																
24	Name	LSL	USL	N	Mean	S	Median	Min	Max	Range	Skewness	Kurtosis	СР	CPL	CPU	СРК	
25	Data	9	11	32	9.999	0.226	10.004	9.527	10.385	0.858	-0.14	-1.038	1.47	1.47	1.47	1.47	
26																	
27	Attributes	s											Outliers				
28	Fail Low	%Fail Low	Fail High	%Fail High	Fail	%Fail	Pass	%Pass					Rule	Low	High	Total	
29	0	0	0	0	0	0	32	100					3Sigma	0	0	0	
30																	
31																	

Histogram Chart Report provides a feature-rich results and editing capability to view data in a histogram format. The dialog view allows users to edit how the histogram is presented. For example, number of bins, showing or hiding the normal approximation on the chart, showing or hiding histogram point values, etc. A limit optimizer too lets the user automatically adjust the limits based on a target Cpk.

InstrumentAccuracy

The InstrumentsAccuracy chart type is a tool to characterize the accuracy of measuring instruments over s specified range based on %Reading Error, Offset Error and Range. The tool can be used to characterize a single instrument, or multiple instruments performing the same task to compare capabilities. The latter is useful if multiples manufacturers/models are being considered, and it is desired to select the best one for the task and cost.

The MeasurementUncertainty chart report provides a full measurement uncertainty analysis including running GR&R to obtain repeatability and reproducibility values to calculate the Type A statistical variation component. The user can also input custom Type B uncertainties not otherwise provided in the default settings. The automation means that it can provide a useful add-on for other development environments such as LabVIEW and .NET.

Determines the vital few test names that exhibit the highest failure rate. The dialog view allows reducing the number to consider using the Maximum Categories entry in cases where there are many trivial ones. Residuals, if any, are shown on the right.

Percentile

	A	B	С	D	E	F	G	H		J	K				
1	Percentile Table						_	_							
2	Percentile	Value			PreTest										
3	0	9.624632													
4	5	9.714698													
5	10	9.728532		10.	8-										
6	15	9.769948													
7	20	9.808136		10	6-										
8	25	9.872471		10.	Ŭ E										
9	30	9.894859		10	4_										
10	35	9.906851		10.	T										
11	40	9.959822		10	2										
12	45	10.020906		> 10.	2										
13	50	10.037674		10	0										
14	55	10.061479		10.											
15	60	10.093912		0											
16	65	10.107675		5.		-									
17	70	10.158413													
18	75	10.216765		9.	00 100	20.0 :	30.0 40.0	50.0 6	500 700	80.0	90.0 100	0			
19	80	10.269567			5.0	15.0 25.0	35.0 4	5.0 55.0	65.0 7	75.0 85	.0 95.0				
20	85	10.382769						Percentile							
21	90	10.446141													
22	95	10.549986													
23	100	10.659606													
24															

The Percentile ChartReport provides a view of the data percentiles. This is useful if it is important to granularly determine percentiles from data min to max.

RunPlot

A RunPlot is used to track a test result through several process steps and detect any out-of-control points or trend characteristics. In the example below, a positive trend is detected. The Event column of the Run Data table shows any points that are not in control.

Determines the vital few test Categories that exhibit the highest failure rate. The dialog view allows reducing the number to consider using the Maximum Categories entry in cases where there are many trivial ones. Residuals, if any, are shown on the right.

Getting Data from a Database

Datał	oase Dialog				-
amples	:				
Random	Data	~	Load Exa	ample	
onnection	n String: licrosoft Acces	e Driver (* mo	lb * accdb))	DBO-CAL	leam/jimd/OneDrive/My Documente/CSham 2022 Community/ChatRenoter/bin/Debug / Indude Files/ChatRenoter Evample Data and
Diver-tiv	IICIUSUIT ACCES	s briver (inc	ib, .accub)j	,000-0.108	sera gin a concentre my bocumenta cosnap 2022 community conarcheporter bin robbug, undude mes conarcheporter Example bata accur
Query:					
select * fr	om RandomDa	ta			
Data Tabl	e:				
Key	PreTest	24H	48H	72H	
1	9.728532	10.144245	10.720362	10.196201	
2	9.885224	9.909177	10.485875	11.11/306	6
3	10.158413	10.384231	10.679669	11.708503	3
4	10.446141	9.957694	9.787862	11.361124	4
5	10.659606	10.309335	10.654625	9.90759	
6	9.894859	10.151362	9.915727	10.696445	5
/	10.071236	10.390109	10.132545	10.777328	8
8 0	9.964786	10.126892	9.448302	11.207052	
9 10	0.70040	10.254524	9.786112	10.27499	<u></u>
11	10 /06121	9.971799	10 579291	10.3/463	
12	10.430131	10 281549	10.373391	11 501696	6
13	10.047132	10.201340	10 150389	10.840085	5
14	9 959822	10 414023	10.556658	10.359	·
15	9.722146	10.518648	10.040303	9 894348	
16	9.624632	10.144729	10.234331	10.206774	4
47	0.0000051	10.004007	10.000000	10.044707	
					Execute Query Save

To obtain data from a database first click **Database** on the main window toolbar. Then you can enter the database **Connection String** and **Query**. Click **Execute Query** executes the query as shown above. Clicking **Save** saves the data table to a worksheet on the Main window. Then you can run one of the reports that supports this kind of data.

Operating ChartReporter as Stand-Alone

When operating ChartReporter as a stand-alone application, data is first loaded into the application using the Open tool. The user then selects a worksheet and data and clicks the Run tool and the ChartSelector dialog is shown:

Chart Selector	_		\times	
Norksheet Selectio	n Properties:			
Valid Selection	First Column Numeric	Rows	Columns	3
V-1:4		20	4	
Valid	Yes	32	4	
Chart Selector: BoxPlot	Yes ×	32	4	

The Chart Selector drop-down shows the available Chart Reports based on the format of the data selected. Once a selection is main, the user clicks run to run the chart report.

Interfacing with the LabVIEW Development Environment

A LabVIEW project is provided to run chart reports from it such that data and required functionality is passed from the LabVIEW environment to the .NET ChartReporter application using inter-process communication as shown below.

The LabVIEW project provides all the chart reports that are supported in the ChartReporter windows application. A screenshot of the LabVIEW project is shown below.

The polymorphic ChartReport VIs allows users to enter data from several methods, such as LabVIEW data input or a file containing the data.

Run by entering data from a CSV file

Run by sending a database query to ChartReporter f	or it to perform to obtain the data
	Connection String
Driver={Microsoft Access Driver (*.mdb, *.accdb)};DBC My Documents\CSharp 2022 Community\ChartReport ChartF	Q=C:\Users\jim-d\OneDrive\ er\bin\Debug.\Include Files\ Reporter Example Data.accdb
Que select PreTest from Rand	ry String
Spec	Limits LL Precision (3)
	9 Histogram db 🔻
	11

Operating as a .NET Add-On

A .NET class library is provided to operate in the .NET environment. In this manner, the class library can be added as a reference to your own development .NET projects so you can call the functionality of ChartReporter to run any of the chart reports.

From Data:

The example C# code below shows how a Histogram is called by referencing the class library method Histograam1d.

Data is simulated for this example using an open source MathNet library. Observe the functionality allows specifying an existing Excel workbook to be opened in ChartReporter so that reports can be included there.

From a Database query:

